Retinopathy in mice induced by disrupted all-trans-retinal clearance.
نویسندگان
چکیده
The visual (retinoid) cycle is a fundamental metabolic process in vertebrate retina responsible for production of 11-cis-retinal, the chromophore of rhodopsin and cone pigments. 11-cis-Retinal is bound to opsins, forming visual pigments, and when the resulting visual chromophore 11-cis-retinylidene is photoisomerized to all-trans-retinylidene, all-trans-retinal is released from these receptors. Toxic byproducts of the visual cycle formed from all-trans-retinal often are associated with lipofuscin deposits in the retinal pigmented epithelium (RPE), but it is not clear whether aberrant reactions of the visual cycle participate in RPE atrophy, leading to a rapid onset of retinopathy. Here we report that mice lacking both the ATP-binding cassette transporter 4 (Abca4) and enzyme retinol dehydrogenase 8 (Rdh8), proteins critical for all-trans-retinal clearance from photoreceptors, developed severe RPE/photoreceptor dystrophy at an early age. This phenotype includes lipofuscin, drusen, and basal laminar deposits, Bruch's membrane thickening, and choroidal neovascularization. Importantly, the severity of visual dysfunction and retinopathy was exacerbated by light but attenuated by treatment with retinylamine, a visual cycle inhibitor that slows the flow of all-trans-retinal through the visual cycle. These findings provide direct evidence that aberrant production of toxic condensation byproducts of the visual cycle in mice can lead to rapid, progressive retinal degeneration.
منابع مشابه
Involvement of all-trans-retinal in acute light-induced retinopathy of mice.
Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we ...
متن کاملLimited roles of Rdh8, Rdh12, and Abca4 in all-trans-retinal clearance in mouse retina.
PURPOSE Although the retinoid cycle is essential for vision, all-trans-retinal and the side products of this cycle are toxic. Delayed clearance of all-trans-retinal causes accumulation of its condensation products, A2E, and all-trans-retinal dimer (RALdi), both associated with human macular degeneration. The protective roles were examined of the all-trans-RDHs, Rdh8 and Rdh12, and the ATP-bindi...
متن کاملToll-like receptor 3 is required for development of retinopathy caused by impaired all-trans-retinal clearance in mice.
Chronic inflammation is an important component that contributes to many age-related neurodegenerative diseases, including macular degeneration. Here, we report a role for toll-like receptor 3 (TLR3) in cone-rod dystrophy (CORD) of mice lacking ATP-binding cassette transporter 4 (ABCA4) and retinol dehydrogenase 8 (RDH8), proteins critical for all-trans-retinal clearance in the retina. Increased...
متن کاملHydroxychloroquine Induced Retinopathy: A Case Series
Background and Purpose: Occular toxicity is one of the most important complications of Hydroxychloroquine. Not any type of treatment has so far been found and recommended for this disorder. The purpose of this study was to report some characteristics of patients with Hydroxychloroquine Induced Retinopathy. Materials and Methods: From 107 patients with rheumatoid arthritis (...
متن کاملEvaluation of potential therapies for a mouse model of human age-related macular degeneration caused by delayed all-trans-retinal clearance.
PURPOSE Evaluate the efficacy of potential therapeutics in Rdh8(-/-)Abca4(-/-) mice, a rodent model of human age-related macular degeneration (AMD). METHODS Therapeutic efficacy of several antioxidant agents (ascorbic acid, alpha-lipoic acid, alpha-tocopherol, Mn(III)-tetrakis(4-benzoic acid)-porphyrin, and butylated hydroxytoluene), an immunosuppressive agent with antivascular endothelial gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 39 شماره
صفحات -
تاریخ انتشار 2008